Statistics
  • 현재 접속자 185 명
  • 오늘 방문자 2,411 명
  • 어제 방문자 3,609 명
  • 최대 방문자 11,031 명
  • 전체 방문자 907,443 명
  • 전체 회원수 56 명
  • 전체 게시물 2,152 개
  • 전체 댓글수 4 개
AI강의동영상

Hello World | Coding with Qiskit 1.x | Programming on Quantum Computer…

페이지 정보

작성자 bryanai 작성일 24-06-22 22:21 조회 1,837 댓글 0

본문

Hello World | Coding with Qiskit 1.x | Programming on Quantum Computers



Install 



import qiskit
qiskit.__version__

pip install qiskit-ibm-runtime 
pip install qiskit[visualization]
pip install jupyter


Do the Hello World example on a 2-qubit Bell state 
 
from qiskit import QuantumCircuit
from qiskit.quantum_info import SparsePauliOp
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager
from qiskit_ibm_runtime import EstimatorV2 as Estimator
 
# Create a new circuit with two qubits
qc = QuantumCircuit(2)
 
# Add a Hadamard gate to qubit 0
qc.h(0)
 
# Perform a controlled-X gate on qubit 1, controlled by qubit 0
qc.cx(0, 1)
 
# Return a drawing of the circuit using MatPlotLib ("mpl"). This is the
# last line of the cell, so the drawing appears in the cell output.
# Remove the "mpl" argument to get a text drawing.
qc.draw("mpl")


# Set up six different observables.
from qiskit.quantum_info import SparsePauliOp
 
observables_labels = ["IZ", "IX", "ZI", "XI", "ZZ", "XX"]
observables = [SparsePauliOp(label) for label in observables_labels]


from qiskit_ibm_runtime import QiskitRuntimeService
 
# If you did not previously save your credentials, use the following line instead:
# service = QiskitRuntimeService(channel="ibm_quantum", token="<MY_IBM_QUANTUM_TOKEN>")
service = QiskitRuntimeService()
 
backend = service.least_busy(simulator=False, operational=True)
 
# Convert to an ISA circuit and layout-mapped observables.
pm = generate_preset_pass_manager(backend=backend, optimization_level=1)
isa_circuit = pm.run(qc)
 
isa_circuit.draw('mpl', idle_wires=False)


# Construct the Estimator instance.
from qiskit_ibm_runtime import EstimatorV2 as Estimator
 
estimator = Estimator(mode=backend)
estimator.options.resilience_level = 1
estimator.options.default_shots = 5000
 
mapped_observables = [
    observable.apply_layout(isa_circuit.layout) for observable in observables
]
 
# One pub, with one circuit to run against five different observables.
job = estimator.run([(isa_circuit, mapped_observables)])
 
# Use the job ID to retrieve your job data later
print(f">>> Job ID: {job.job_id()}")



[5] :

# This is the result of the entire submission.  You submitted one Pub,
# so this contains one inner result (and some metadata of its own).
job_result = job.result()
 
# This is the result from our single pub, which had six observables,
# so contains information on all six.
pub_result = job.result()[0]




# Plot the result
 
from matplotlib import pyplot as plt
 
values = pub_result.data.evs
 
errors = pub_result.data.stds
 
# plotting graph
plt.plot(observables_labels, values, '-o')
plt.xlabel('Observables')
plt.ylabel('Values')
plt.show()

 

댓글목록 0

등록된 댓글이 없습니다.